SEASAR 2018
Advances in SAR Oceanography
7–10 May 2018 | ESA–ESRIN | Frascati (Rome), Italy
A Novel Approach To SAR
Ocean Wind Retrieval

by Vegard Nilsen, (Geir Engen, Harald Johnsen)

Norut Research Institute
• Extract wind information from SAR ocean cross spectrum.
• Independent of a priori information.
• Data driven model
 • Based on new parameters
 • ISV
 • Plane slope values
 • Bayesian system
 • Solve azimuth ambiguity
S1B-201610-WV1 average phase plane $U_{10} = 8.78638$ [m/s], $\theta = 0.454521$ [deg]

Plane (α, β) area

ISV area
AVERAGE AZIMUTH SLOPE BY WIND DIRECTION

- Total
- Symmetric
- Anti Symmetric
DATA DESCRIPTION

• Sentinel 1A: January 2017 (#16353), Sentinel 1B: October 2016 (#17887) and January 2017 (#28857)
 • WV1 for better SNR

• Collocated with atmospheric model ECMWF
 • Training
 • Validation

• Ascat data (Omitted)
DIRECTIONAL DISTRIBUTION OF PARAMETERS

- Directional distribution of ISV
- Directional distribution of range slope (β)
- Directional distribution of azimuth slope (α)
- Directional distribution of NRCS

Wind direction degrees (from range) (deg)
MODEL BUILD UP

\[
J(U_{10}, \theta) = \frac{(x_{\text{obs}} - x_{\text{isv}})^2}{\sigma_{\text{isv}}^2} + \frac{(x_{\text{obs}} - x_{\text{ra}})^2}{\sigma_{\text{ra}}^2} + \frac{(x_{\text{obs}} - x_{\text{az}})^2}{\sigma_{\text{az}}^2} + \frac{(x_{\text{obs}} - x_{\text{nrCs}})^2}{\sigma_{\text{nrCs}}^2}
\]

minimize $J(U_{10}, \theta)$

where

\[
x_{\text{mod}}(\sigma_0, \theta, \rho) = \sum_{i=0}^{M} \sum_{j=0}^{N} \sum_{k=0}^{K} \alpha_{ijk} \sigma_0^i \rho^j (\cos(k \ast \theta) + \sin(k \ast \theta))
\]

\[
x_{\text{nrCs}}(U_{10}, \theta, \rho) = \sum_{i=0}^{M} \sum_{j=0}^{N} \sum_{k=0}^{K} \alpha_{ijk} U_{10}^i \rho^j \cos(k \ast \theta)
\]
WIND ESTIMATE

Wind direction estimate versus ECMWF wind direction in degrees, std: 30.6, bias: -2.5

Wind speed (U_{10}) estimate versus ECMWF wind speed (U_{10}), std: 1.79, bias: 0.009
WIND ESTIMATE DENSITY

- Estimation density of wind speed vs ECMWF (2017-01): std 1.79, bias 0.009
- Estimation density of wind direction vs ECMWF (2017-01): std 10.6, bias 2.5
PERFORMANCE

Test data for all wind speeds.

<table>
<thead>
<tr>
<th>Model Data</th>
<th>Test data</th>
<th>nr. scenes</th>
<th>mode</th>
<th>std (U_{10})</th>
<th>bias (U_{10})</th>
<th>std (θ)</th>
<th>bias (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1B-201610</td>
<td>S1B-201610</td>
<td>17887</td>
<td>WV1</td>
<td>1.75</td>
<td>-0.06</td>
<td>49.23</td>
<td>-1.11</td>
</tr>
<tr>
<td>S1B-201610</td>
<td>S1B-201701</td>
<td>28867</td>
<td>WV1</td>
<td>1.80</td>
<td>-0.11</td>
<td>51.00</td>
<td>-2.80</td>
</tr>
<tr>
<td>S1B-201610</td>
<td>S1A-201701</td>
<td>16353</td>
<td>WV1</td>
<td>1.78</td>
<td>0.30</td>
<td>51.63</td>
<td>-3.58</td>
</tr>
<tr>
<td>S1B-201610</td>
<td>S1B-201610</td>
<td>63485</td>
<td>WV1</td>
<td>1.79</td>
<td>0.01</td>
<td>50.67</td>
<td>-2.51</td>
</tr>
<tr>
<td>S1B-201701</td>
<td>S1B-201701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1A-201701</td>
<td>S1A-201701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test data for ECMWF wind speeds above 7 m/s.

<table>
<thead>
<tr>
<th>Model Data</th>
<th>Test data</th>
<th>nr. scenes</th>
<th>mode</th>
<th>std (U_{10})</th>
<th>bias (U_{10})</th>
<th>std (θ)</th>
<th>bias (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1B-201610</td>
<td>S1B-201610</td>
<td>9670</td>
<td>WV1</td>
<td>1.90</td>
<td>0.10</td>
<td>34.49</td>
<td>-0.10</td>
</tr>
<tr>
<td>S1B-201610</td>
<td>S1B-201701</td>
<td>14684</td>
<td>WV1</td>
<td>1.93</td>
<td>0.23</td>
<td>35.78</td>
<td>-2.29</td>
</tr>
<tr>
<td>S1B-201610</td>
<td>S1A-201701</td>
<td>8523</td>
<td>WV1</td>
<td>1.92</td>
<td>0.49</td>
<td>38.49</td>
<td>-2.79</td>
</tr>
<tr>
<td>S1B-201610</td>
<td>S1B-201610</td>
<td>32905</td>
<td>WV1</td>
<td>1.93</td>
<td>0.17</td>
<td>36.15</td>
<td>-1.78</td>
</tr>
<tr>
<td>S1B-201701</td>
<td>S1B-201701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1A-201701</td>
<td>S1A-201701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FUTURE WORKS

1. Revisit the model for estimating wind speed.
2. New elliptical weight function for the plane.
3. Creating a regularized minimization model.
4. More high wind speed data (124 samples >20 m/s).
The research is funded by CIRFA partners and the Research Council of Norway (RCN grant no. 237906)