SEASAR 2018

Advances in SAR Oceanography

7–10 May 2018 | ESA–ESRIN | Frascati (Rome), Italy
Ice/water classification using dual-polarization C- and L-band synthetic aperture radar images over Fram Strait

Wiebke Aldenhoff¹, Céline Heuzé², Leif E.B. Eriksson¹

¹Department of Space, Earth and Environment, Chalmers University of Technology
²Department of Marine Sciences, University of Gothenburg
Why do we care about information of sea ice cover?
Outline

1. Study Area
2. Dataset
3. Algorithm
4. Results
5. Outlook
Study Area – Fram Strait

Challenges:
- Sea ice drift
- Incidence angle variations
- Variety of ice regimes

Why using different frequencies?

Penetration depth

⇒ Better information of ice cover
⇒ Increase of temporal resolution

Backscatter dependence on surface roughness
(from "Remote Sensing and Image Interpretation" by T. Lillesand)
Dataset

<table>
<thead>
<tr>
<th></th>
<th>Alos-2 Palsar-2</th>
<th>Sentinel-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>ScanSAR Dual Pol</td>
<td>EW GRDM Dual Pol</td>
</tr>
<tr>
<td>Wavelength</td>
<td>L-band 25 cm</td>
<td>C-band 5.6 cm</td>
</tr>
<tr>
<td>NESZ (design numbers)</td>
<td>-26 dB</td>
<td>-22 dB</td>
</tr>
<tr>
<td># of images</td>
<td>24 => 12 training/ 12 validation (winter 14/15 15/16)</td>
<td>25 => 12 training/ 13 validation (winter 15/16)</td>
</tr>
<tr>
<td>Resolution az/rg (pixel size)</td>
<td>95.1 m/77.7 m (40m)</td>
<td>93 m/ 87 m (25 m)</td>
</tr>
</tbody>
</table>
Mapping from features to ice classes

SAR image

Feet-forward Neural Network

Classification

=> Trained with manually defined ROI’s representing the classes
Mapping from features to ice classes

Feet-forward Neural Network

Classification

Autocorrelation

=> Trained with manually defined ROI’s representing the classes
Example for classification 12.10.2015

Copernicus Sentinel data 2015
Alos-2 Palsar-2 ©Jaxa
Validation with icecharts and AMSR-2 data

Agreement:
C-Band: 87%
L-band: 84%

Agreement:
C-Band: 89%
L-band: 86%
Comparison of C-band and L-band
Conclusions

⇒ C-band is more robust for ice/water classification
⇒ L-band outlines thin ice features
⇒ Ice drift plays a role even for short time gaps
⇒ Algorithm needs improvement for areas where texture does not separate ice and water
Thank you for your attention!

This project was funded by the Swedish National Spaceboard (dnr 140/13).
Alos-2 Palsar-2 images were provided by Jaxa under the 4th RA, PI number 1331

Differences in the marginal ice zone

Histogram of L-band cross-polarization training samples

-10^6 dB

-12 -10 -8 -6 -4 -2 0 dB

-10^5

-1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 dB

Ice Water Calm water/Thin ice