The Copernicus Maritime Surveillance (CMS) service provides monitoring of human activity at sea based on satellite Earth Observation data, namely SAR and optical imagery. The European Maritime Safety Agency (EMSA) is entrusted by the European Commission (EC) to implement CMS as a component of the Copernicus Programme[1].
The objective of CMS is to support monitoring activities of European coastal States National Administrations and relevant EU bodies, with responsibilities in the maritime domain, in the fields of: fisheries control, maritime safety and security, law enforcement, customs, pollution monitoring and other activities which affect EU maritime interests (e.g. defence).
In CMS, Earth Observation (EO) products are combined with other maritime related information to provide end users a tailored made, near real time (NRT) service in support to a wide range of maritime functions. The service is delivered to authorized users only, according to precise data access police rules and aims enhancing the maritime surface picture. CMS products include: EO SAR and Optical images, EO value added products and fusion products, with spatial resolutions spanning from 30 cm to 100 m. Products include: ship detection, oil spill detection and activity detection. The service level is focused in NRT product delivery (less than 30 min for SAR and 45 min for Optical products).
User satisfaction feedbacks from operational usage, as well as a yearly comprehensive evaluation on the service as a whole, have been crucial in identifying areas for improvement and in fulfilling operational user needs. Since the start, (September 2016) the following new CMS products were identified: Lost container detection, Iceberg detection, NRT ice monitoring, Wake detection, and Aircraft debris detection.
Besides new products, the evolution of the space-related infrastructures will bring new EO capabilities that will enable addressing use cases that are currently difficult to support using space based assets. Examples of these new capabilities include: vessel radar detection, high resolution thermal infrared imaging sensors, high resolution satellite video and satellite based GSM/satellite phone detection. Additionally the increase in the number of satellite constellations may enable a more continuous monitoring of the maritime domain, which will enable the tracking of non-cooperative targets, addressing a significant gap in existing EO based systems. Finally, with the expected increases in both volume and frequency of EO data, the potential for use of automatic behaviour detection algorithms and other spatial based analytics (relying on state of the art machine learning algorithms), for maritime surveillance applications, is greatly increased.
At this stage, considering the operational needs for new and improved EO products, as well as the new satellite based capabilities that are in the short-term horizon for deployment, it is clear that there is a strong opportunity for Research and Development institutions’ to improve and expand the existing EO product catalogues to better address the maritime surveillance operational needs of a wide range of users.
[1] Established by the Regulation (EU) No 377/2014 of the European Parliament and of the Council of 3 April 2014